The configuration of the TDO provides a wide effective bearing spread, making it ideal for applications in which overturning moments are a significant load component. TDO bearings can be used in fixed positions or allowed to float in the housing bore.

Specifications | Dimensions | Abutment and Fillet Dimensions | Basic Load Ratings | Factors

Specifications

Series 745
Cone Part Number 749A
Cup Part Number 742D
Design Units Imperial

Bearing Weight
17.73 lb
8.042 Kg

Cage Type
Stamped Steel

Ab-Cage-Cone Frontface	0.08 in
Clearance	2 mm

Alternate Part Name
749A-742D

d - Bore	3.2500 in
	82.550 mm
D - Cup Outer Diameter	6.1250 in
	155.575 mm
B - Cone Width	1.8375 in
	46.673 mm
C - Double Cup Width	3.3750 in
	85.725 mm
	4 in
T - Bearing Width across Cones	101.6 mm

Abutment and Fillet Dimensions

R - Cone Backface "To Clear"	0.14 in
Radius 1	3.600 mm
r - Cup Frontface "To Clear"	0.06 in
Radius 2	1.5 mm
db - Cone Backface Backing	3.9 in
Diameter	
Da - Cup Frontface Backing	99.10 mm
Diameter Aa - Cage-Cone Backface	143.64 in Clearance

Basic Load Ratings

C90-Dynamic Radial Rating
(One-Row, 90 million
revolutions) ${ }^{3}$

21900 lbf
97600 N

C1 - Dynamic Radial Rating
(Two-Row, 1 million revolutions) ${ }^{4}$

147000 lbf
656000 N

C90(2) - Dynamic Radial Rating
(Two-Row, 90 million revolutions) ${ }^{5}$

Ca90-Dynamic Thrust Rating (90 million revolutions) ${ }^{6}$

38200 lbf 170000 N

12200 lbf
54400 N

Factors

K-Factor ${ }^{7}$	1.8
e- ISO Factor ${ }^{8}$	0.33
Y1 - ISO Factor ${ }^{9}$	2.08
Y2 - ISO Factor ${ }^{10}$	3.09
Cg - Geometry Factor ${ }^{11}$	0.0898

${ }^{1}$ These maximum fillet radii will be cleared by the bearing corners.
2 These maximum fillet radii will be cleared by the bearing corners.
${ }^{3}$ Based on 90×10^{6} revolutions L_{10} life, for The Timken Company life calculation method. C_{90} and $C_{a 90}$ are radial and thrust values for a single-row, $\mathrm{C}_{90(2)}$ is the two-row radial value.
${ }^{4}$ Based on 1×10^{6} revolutions L_{10} life, for the ISO life calculation method.
${ }^{5}$ Based on 90×10^{6} revolutions L_{10} life, for The Timken Company life calculation method. C_{90} and $C_{a 90}$ are radial and thrust values for a single-row, $\mathrm{C}_{90(2)}$ is the two-row radial value.
${ }^{6}$ Based on 90×10^{6} revolutions L_{10} life, for The Timken Company life calculation method. C_{90} and $C_{a 90}$ are radial and thrust values for a single-row, $\mathrm{C}_{90(2)}$ is the two-row radial value.
${ }^{7}$ These factors apply for both inch and metric calculations. Consult your Timken representative for instruction on use.
8 These factors apply for both inch and metric calculations. Consult your Timken representative for instruction on use.
${ }^{9}$ These factors apply for both inch and metric calculations. Consult your Timken representative for instruction on use.
${ }^{10}$ These factors apply for both inch and metric calculations. Consult your Timken representative for instruction on use.
${ }^{11}$ Geometry constant for Lubrication Life Adjustment Factor a3I.

IMPERIAL UNITS

